
Vernier: Accurate and Fast Acoustic Motion
Tracking Using Mobile Devices
Yunting Zhang, Jiliang Wang, Weiyi Wang, Zhao Wang, Yunhao Liu

School of Software and TNList
Tsinghua University, China

{zhangyt15, wang-wy14, wangc16}@mails.tsinghua.edu.cn, {jiliangwang, yunhao}@tsinghua.edu.cn

Abstract—Acoustic motion tracking has been viewed as a
promising user interaction technique in many scenarios such
as Virtual Reality (VR), Smart Appliance, video gaming, etc.
Existing acoustic motion tracking approaches, however, suffer
from long window of accumulated signal and time-consuming
signal processing. Consequently, they are inherently difficult
to achieve both high accuracy and low delay. We propose
Vernier, an efficient and accurate acoustic tracking method on
commodity mobile devices. In the heart of Vernier lies a novel
method to efficiently and accurately derive phase change and
thus moving distance. Vernier significantly reduces the tracking
delay/overhead by removing the complicated frequency analysis
and long window of signal accumulation, while keeping a high
tracking accuracy. We implement Vernier on Android, and
evaluate its performance on COTS mobile devices including
Samsung Galaxy S7 and Sony L50t. Evaluation results show that
Vernier outperforms previous approaches with a tracking error
less than 4 mm. The tracking speed achieves 3× improvement
to existing phase based approaches and 10× to Doppler Effect
based approaches. Vernier is also validated in applications like
controlling and drawing, and we believe it is generally applicable
in many real applications.

I. INTRODUCTION

The rapid development and prevalence of mobile devices en-
able various ubiquitous mobile applications. Acoustic motion
tracking using mobile devices has been shown as a promising
user interaction technique in many scenarios such as Smart
Appliance (e.g., TV control), Virtual Reality (VR), Augmented
Reality (AR), video gaming, etc., attracting many attentions
and efforts. In acoustic motion tracking, a mobile phone tracks
its position using received acoustic signal. For example, with
acoustic motion tracking the gesture or posture of a user can
be obtained, which can facilitate various applications.

Typically, inertial sensors such as accelerometer, gyroscope
can be used for mobile motion tracking [24]. However,
the tracking error is high (up to 60 cm even in 6s [24])
and thus accurate tracking is difficult to achieve [13]. Vari-
ous approaches leverage RF signal for mobile device track-
ing [20] [16] [9] [23]. Those approaches usually require
special hardware support or incur a high computation over-
head [18] [4] [2] [1].

Recently, acoustic signal based motion tracking is proposed
as a promising technique [15] [19] [11] [3] [12] [10] [5]
[7]. Further, CAT [13] proposes a novel distributed Frequen-
cy Modulated Continuous Wave (FMCW) based method for
mobile motion tracking. Using FMCW, the calculation of

moving time is translated to calculation of frequency. CAT
improves the accuracy by combining inertial sensors. Recently,
LLAP [21] proposes a tracking method based on phase shift of
acoustic signal. In LLAP, a mobile phone transmits an acoustic
signal, which is reflected by a moving target and received by
the mobile phone again. By calculating the phase shift between
the original signal and the reflected signal, the signal travelling
time and thus moving distance of the target can be obtained.

Existing approaches, however, have some limitations in
terms tracking accuracy, overhead and delay. Most approaches
require frequency analysis (e.g., FFT) to derive the frequency
shift, phase, etc., which inevitably introduces a high com-
putation overhead and delay. Moreover, tracking accuracy
is also limited by window length. Achieving high accuracy
requires accumulating and processing a sufficient window
of signal. Thus it is difficult to achieve both low latency
and high accuracy simultaneously. Those limitations hinder
performance improvement for acoustic motion tracking and
limit their practical application.

A. Our Approach

To address those limitations, we propose Vernier, an accu-
rate and fast acoustic motion tracking approach using mobile
devices. As in [24] and [13], a mobile device running Vernier
receives inaudible acoustic signals, each at a certain frequency,
from different signal sources (e.g., speakers on TVs). Instead
of calculating the frequency shift directly (e.g., using FFT),
Vernier designs a novel method to calculate the phase change
due to frequency shift with a small window of signal. Then
Vernier calculates the distance change to each source and
derives the real-time position of the mobile device.

In the heart of Vernier, we design a novel method to
efficiently calculate the phase change based on a very small
window of samples (e.g., 100 samples). Our method is inspired
by vernier caliper. Signal samples in our method act as the
vernier while the local maximums of original signal act as
the ruler. For different phase changes (length), the samples on
the vernier has different matching positions (local maximum)
on the ruler, which can be leveraged to further derive phase
change. To further improve the efficiency, we propose a
Differentiated window based phase change calculation (DW-
PC) in which we calculate the phase change based on local
maximum change between two windows. Further, we show
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Fig. 1: Principle of our approach.

that our method can achieve a higher accuracy than existing
approaches while has a much smaller delay and overhead.

Overall, Vernier aims to achieve the following goals: (1)
accurate tracking with mm-level error, (2) a low delay in order
to enable real-time applications such as mobile gaming and
(3) a low computation overhead efficiently run on commodity
mobile devices.

B. Summary of Main Results

We implement Vernier on Android and evaluate it on diff-
erent mobile devices including SAMSUNG Galaxy S7/Sony
L50t. Vernier has no special hardware requirements and can
run on most commodity mobile phones. The evaluation results
show that Vernier can achieve efficient tracking with a median
error less than 4 mm in various scenarios at a distance of
7 m. We believe Vernier is general and can facilitate nowadays
user interaction like Video Games, VR, AR, smart home
applications, etc.

Our major contributions include:

• We propose the design of Vernier, an accurate and fast
motion tracking approach on mobile devices, which lever-
ages a novel method to efficiently and accurately derive
phase change and thus moving distance.

• We analyze the performance of Vernier and compared it
with existing approaches. The analysis result shows the
performance improvement of Vernier.

• We implement Vernier on Android and evaluate it on
different mobile devices including SAMSUNG Galaxy
S7/Sony L50t. The evaluate results show that Vernier can
achieve efficient tracking with a median error less than
4 mm in various scenarios at a distance of 7 m.

The remainder of this paper is organized as follows. Sec-
tion II analyzes the limitations of existing approaches. Sec-
tion III presents the main design of our approach. Section IV
shows implementation parameters in real applications. Sec-
tion V shows the evaluation results. Section VI concludes this
work.

II. PRIOR ARTS

We briefly introduce the basic mechanisms of existing
acoustic motion tracking approaches and their practical limi-
tations.
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Fig. 2: Calculate the time t based on FMCW.

A. Tracking based on Doppler Effect

Many approaches track mobile device based on Doppler
Effect [24] [14] [8] [17] [6]. Suppose a sound source is
emitting a signal and a moving receiver receives the signal.
Due to Doppler Effect, the receiver’s relative speed v to the
sound source can be calculated as:

v =
F∆

F0
c (1)

where F0 is the original frequency of the signal, F∆ is the
frequency shift due to Doppler Effect, and c is the speed
of sound. Therefore, the moving distance for time T can be
calculated as d =

∫ T
0
vdt. As a result, given the initial position,

the target can then be tracked.
The key step in Doppler Effect based tracking is to calculate

the frequency shift (Fc). By applying frequency analysis
(e.g., STFT) to the received acoustic signal, the spectrum
distribution of the received signal can be obtained. Given
the frequency of original signal (e.g., sine wave) [24], the
frequency shift Fc is calculated. In practice, the frequency
analysis (e.g., STFT) is applied to a moving window. Thus
the accuracy of frequency DF can be calculated as:

F̂ =
Fs
Lw

(2)

where Lw is the window length and Fs is the sampling rate.
Note that padding the signal with zeros cannot improve the
frequency resolution [21]. Combing Eq. (1) and (2), we can
derive the resolution of moving speed as:

v̂ =
F̂

F0
c =

Fs
LwF0

c. (3)

We can see that the accuracy of moving speed (and thus
distance) is related to the window size Lw. A larger window
can provide better frequency domain resolution and higher
moving speed accuracy. On the other hand, a larger window
contains more samples and causes a larger delay. For a
typical window Lw = 1764 samples and a sampling rate
Fs = 44100 Hz [24] [21], the accuracy of spectrum DF is
Fs
Lw

= 44100
1764 = 25 Hz. Suppose the frequency F0 = 20000

Hz and the speed of sound wave c = 340 m/s, the moving
speed resolution is v̂ = 25×340

20000 = 0.425 m/s. This indicates
that the accumulated distance error in 1 second can be up to
0.425 m. The corresponding delay using such a window is
1764/44100 = 40 ms.



Moreover, Doppler shift is subject to high noise. Detecting
Doppler shift needs to detect the frequency with the highest
energy. However, the frequency with highest energy may be
difficult to determine due to noise as shown in [21] .

We can see that approaches using Doppler Effect, which
require window-based frequency analysis, introduce inevitable
computation overhead. High accuracy and small delay is dif-
ficult to achieve simultaneously in practice due to the relation
between window size and accuracy.

B. Tracking based on FMCW

A Frequency Modulated Continuous Wave (FMCW) or
chirp is a signal with linearly increasing Frequency. An
FMCW of length T with frequency ranging from fmin to fmax
can be denoted as

R(t) = cos(2π(fmin +
B

2T
t)t). (4)

where B = fmax − fmin is the bandwidth.
Assume a mobile phone needs to measure the length of path

an FMCW travels, e.g., the round-trip distance to a reflected
object. By using FMCW, the travelling time calculation can
be translated to frequency calculation. The mobile phone first
transmits an FMCW signal, which is directly received by the
mobile phone itself. Meanwhile, the signal travels along the
reflected path and is received by the mobile phone again.
The received signal can be denoted as R′(t) = αR(t − td),
where td is the time delay for travelling along the path and α
is the attenuation. Note CAT [13] removes the requirement
of receiving reflected signal and synchronization between
receiver and signal source by a distributed FMCW. But the
basic idea of distance calculation is similar. As shown in
Figure 2, the distance d can be calculated as

d =
c · td

2
. (5)

The time td can be calculated by the frequency difference
∆f between two FMCW signals. In practice, we multiply the
two signal signals R(t) and R′(t) according to cosA cosB =
1
2 (cos(A+B) + cos(A−B)). By filtering the high frequency
component cos(A+B), we have:

V (t) = α cos(2π(fmintd +B
(2ttd − t2d)

2T
)). (6)

From Eq. (6), we have ∆f = Btd
T where ∆f is the frequency

of V (t). Thus we have

td =
∆f · T
B

. (7)

According to Eq. (7) and (5), the travelling distance can
therefore be calculated as

d =
∆f · c · T

B
. (8)

It is also required to derive the frequency of signal V (t)
(e.g., using FFT). According to Eq. (2), the resolution of
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Fig. 3: Working flows of different approaches.

frequency is F̂ = Fs/Lw. Thus, the accuracy of distance can
be calculated as

d̂ =
Fs · c · T
Lw ·B

. (9)

Since Lw = Fs · T , we have

d̂ =
c

B
. (10)

Eq. (10) shows that the accuracy is only related to B. For
B = 10 kHz [13], which is very large for acoustic signal on
mobile, the accuracy is d̂ = 340/10000 = 0.034 m.

FMCW based approaches require multiplying two signals
(to derive ∆f ), frequency analysis (e.g., FFT) and low pass
filtering (to remove the high frequency component).

C. Tracking based on Phase

Recently, LLAP [21] proposes a method for mobile tracking
based on low latency acoustic phase [22]. Suppose a sound
signal R(t) = cos 2πft travels through a path p with time-
varying path length of dp(t). According to [21], the received
sound signal from path p can therefore be represented as

Rp(t) = 2A′p cos(2πft− 2πfdp(t)/c) (11)

where 2A′p is the amplitude of the received signal, the term
2πfdp(t)/c comes from the phase lag caused by the propa-
gation delay of dp(t)/c and c is the speed of sound. The key
idea is to obtain the phase from the received signal Rp(t).
Based on the phase, the change of path length dp(t) can be
obtained. By multiplying the received signal with the signal
source cos 2πft, we have

R(t)Rp(t) = A′p(cos(−2πf
dp(t)

c
) + cos(4πft− 2πf

dp(t)

c
)). (12)

The high frequency component cos(4πft − 2πfdp(t)/c) can
be removed by a low pass filter. Therefore, we can obtain
Ip(t) = A′p(cos(−2πfdp(t)/c). Similarly, multiplying the
received signal Rp(t) with sin(2πft), we obtain Qp(t) =
A′p sin(−2πfdp(t)/c). Then based on Ip(t) and Qp(t), we
can calculate the phase −2πfdp(t)/c = arctg(Qp(t)/Ip(t)).
Therefore, the path length change in a short time period can
be calculated by the phase change.
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D. Summary

We summarize the main working flow of different ap-
proaches in Figure 3. Both Doppler based approach and FM-
CW based approach require frequency analysis and filtering,
which incur extra overhead on mobile devices. Moreover,
the frequency analysis and filtering introduce an inevitable
delay, e.g., accumulating a window of samples for processing.
They also inherently have a limited resolution in distance
measurement. Phase based approach significantly improve the
accuracy. It still requires multiplying the received signal with
a given signal. It also requires different filters for signal
processing, which incurs a relative high computation overhead
and a non-negligible delay.

The analysis coincides with the experimental results in
those approaches: (1) For Doppler Effect based approach [24],
the median error for tracking is around 1.4 cm and quickly
increases over time due to error accumulation. The tracking
delay is 40 ms. (2) For FMCW based approach [13], the
median tracking error is 6 mm by combining inertial sensors.
The tracking delay is at least 40 ms due to the length of
STFT window. (3) For phase based tracking [21], the 1D
tracking accuracy is 3.5 mm the tracking latency is 15 ms.
The effective range for tracking is within 40 cm according to
their experiments.

III. VERNIER DESIGN

The design Vernier has the following goals:
• Accurate. The approach should be accurate with error in

mm-level.
• Efficient. It should be efficient and incurs a low overhead.

It should be able to run on commodity mobile phones
without specific hardware support.

• Low latency. It should be able to calculate the position
with a very small delay to satisfy real-time applications
such as mobile gaming, VR, etc.

A. 1D Tracking

We first introduce our approach for 1D case. Then we show
how to extend it 2D and 3D cases. Considering a static sound
source transmits an acoustic signal of frequency F0 and a
moving receiver (e.g., mobile phone) receives the sound signal.
For example, the signal source is the TV speaker and the
mobile phone is held by a user. The goal for 1D tracking
is to derive the mobile phone’s moving distance d to the

sound source. The distance can be calculated as d =
∫
t
v(t)dt.

Denote the sampling rate as Fs and the frequency for the
received signal as Fc = F∆ + F0. Due to Doppler Effect, for
a time period of length T , we have

d =
c

F0

∫
t

F∆dt =
c

F0

∫
t

(Fc − F0)dt =
cφ̃

2πF0
− cT (13)

where φ̃ is the phase change for the received signal in a time
period of length T and λ is the wavelength of acoustic signal at
frequency F0. From Eq. (13), we translate distance calculation
during a time period [0, T ] to calculation of the phase change
φ̃. The phase change can be calculated by the start phase and
end phase during the time period. Denote φ0 as the phase at
time 0 and φT the phase at time T , we have φ̃ = φ0 − φT .

1) Sampling based phase calculation: We show how to use
the samples to derive the phase change φ̃ in a time window
[0, T ] containing n samples. Intuitively, the samples contain
the information of phase change. For example, the number of
local maximum (or minimum) Nmax should correspond to the
maximum number of cycles contained in the signal, as long as
the sampling frequency Fs is larger than the Nyquist sampling
rate. Therefore, the phase change φ̃ can be approximated as
φ̃ = Nmax ·2π. Combined with Eq. (13), we can approximate
the moving distance Nmaxλ − cT . It can be seen that the
approximation error is less than a wavelength, i.e. λ = c/F =
1.7 cm when F0 = 20000 Hz.

We further show how to improve the accuracy in practice.
First, we have the following lemma.

Lemma 1: The expected number of local maximums for a
signal of phase change 2πN+φ0 (0 ≤ φ0 < 2π) is N+φ0/2π.

Proof 1: Without loss of generality, we assume 0 ≤ φ0 ≤
π/2. To calculate the expected number of local maximum.
We set N1 as the number of local maximum when φ0 = 0.
We assume the start of the signal is uniformly distributed in a
cycle, i.e., [0, 2π]. As shown in Figure 4, the expected number
of local maximum is calculated by

N̄ =

∫ π
2
−φ0

0

N1 +

∫ π
2

π
2
−φ0

(N1 + 1) +

∫ 2π

π
2

N1 = N1 +
φ0

2π
. (14)

Similarly, we can extend the proof to the case of π/2 < φ0 <
2π.
Lemma 1 indicates that by calculating the expected number of
local maximum, we can derive the phase change of the signal.
Meanwhile, local maximum can be extended to any relatively
fixed points in each cycle, e.g., local minimum.

2) Moving window based phase change estimation: In
practice, a key challenge is how to obtain the expected number
of local maximum. According to Lemma 1, it requires uni-
formly distributed sampling windows. However, as long as the
first window is given, all following windows are determined
given the fixed sample frequency. An intuitive approach is to
randomly choose windows, which introduces a long delay to
process all windows. We show how to derive the phase change
based on the local maximum with discrete samples. Without
loss of generality, we consider a signal of p cycles containing
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Fig. 5: Phase change calaulation (q = 13 and p = 3).

q samples as shown in Figure 5. Note p and q can be simply
calculated by the smallest integer satisfying p/q = Fc/Fs.
For example, if Fs = 44100 Hz and Fc = 20000 Hz, we have
p = 200 and q = 441. For the ith sample of phase φ[i], denote
its relative phase as φ[i] mod 2π.

Lemma 2: The relative phases of q samples are uniformly
distributed in [0, 2π].

Proof 2: Without loss of generality, assume the signal has
an initial phase 0. The relative phase of the ith sample can be
calculated as ip2π/q mod 2π = (ip mod q)2π/q. The result
of ip mod q are pairwise distinct for 0 ≤ i < q. Therefore, the
relative phases of q samples are evenly distributed in [0, 2π].
For example, as shown in Figure 5, there are 13 samples
covering 3 cycles, i.e., q = 13 and p = 3. Folding those
13 samples into a single cycle results in uniformly distributed
samples in the cycle.

3) Differentiated window based phase change estimation:
CW-PE still incurs a high overhead as the window needs to
be moved q times. We further propose an efficient method to
improve the efficiency, namely Differentiated Window based
Sample Counting for Phase Change Calculation (DW-PC).

Assume there are two windows w1 and w2, each of which
contains q samples that cover p cycles of signal. Denote the q
samples in w1 and w2 by mi(1 ≤ i ≤ q) and m′i(1 ≤ i ≤ q).
We show that the phase change between m1 and m′1 can be
calculated based on samples in w1 and w2. For each sample
mi(0 < i ≤ q) in w1, define the Local Maximum Prefix
(LMP) li(0 < 0 ≤ q) as the number of local maximum from
the beginning of w1 to mi. Define the Local Maximum Prefix
Sum (LMPS) of w1 as L =

∑q
i=1 li. Similarly, the LMPS of

w2 is denoted as L′. We have the following lemma.
Lemma 3: Assume the LMPS of m1 and m′1 are L and L′

respectively, the phase change between m1 and m′1 is (L′ −
L) 2π

pq .
Proof 3: Lemma 2 shows that the relative phase of q

samples are evenly distributed in [0, 2π] with inter-distance
2π/q. As shown in Figure 5, we can virtually fold all samples
into a cycle to obtain uniformly distributed samples in the
cycle. Moving the window by 2π/q causes the local maximum
prefix of exactly one sample increases (decreases) by 1. As a
result, the LMPS is increased by 1. Therefore, if the LMPS
is increased by n, i.e. L − L′ = n, the window is moved
by n2π/q. Thus the phase change between m1 and m′1 is
(L′ − L)2π/q.

Algorithm 1 DW-PC(m, φ̃)
Input: m[i](i = 1, 2, . . .), the samples continuously feeded from the

sampling component.
Output: the phase change φ̃[i](i = 1, 2, . . . ).

1: φ̃[1] = 0
2: Nmax = LMPS(m[1],m[2], . . . ,m[q])
3: for i = 2; ;i++ do
4: N ′max = LMPS(m[i],m[i+ 1], . . . ,m[i+ q − 1])
5: φ̃[i] = (N ′max −Nmax) · 2π/q
6: end for

Lemma 3 shows the relationship between the LMPS differ-
ence and phase change. According to Lemma 3, we can use the
LMPS difference of two windows to estimate the phase change
between the start of two windows. If the LMPS difference of
two windows is n, the phase change φ̃ can be calculated as
n2π/q. It can also be seen that the error eφ is at most 2π/q.
Otherwise, the LMPS difference of those two windows should
not be n. Based on the phase change φ̃, according to Eq. (13),
we can calculate the moving distance by phase change.

According to Eq. (13), the moving distance error can be
calculated as c·eφ

2πF0
. For F0 = 20000 and q = 100, we can

see that the distance error by this method is only about 0.17
mm. Based on DW-PC, a mobile phone can continuously
measure the moving distance. It can be seen that DW-PC can
even update the moving distance for each sample, support-
ing efficient and accurate position measurement and motion
tracking. For example, when q is set to 100, only 100 samples
are required for each window, i.e., DW-PC can calculate the
moving distance with a delay of 100/Fs = 2.3 ms.

Algorithm 1 shows the simplified major steps of DW-PC.
The array φ̃[·] is used to store the phase change. Line 1-
2 initialize the parameters. Line 4 calculates the N ′max for
window w2. Line 5 calculates the phase change based on Lem-
ma 3. It can be seen that DW-PC measures the phase change
with at most a linear computation overhead to the window
length (calculate the local maximum and LMCPS). Usually,
the window length is very small (e.g., 100), leading to a very
small computation overhead. Therefore, DW-PC can support
accurate and efficient distance movement measurement. The
performance of DW-PC is also validated in Section V.

B. 2D/3D Tracking

2D and 3D tracking can be achieved based on 1D tracking.
Assume the distance between two speakers A and B is d0 in
2D tracking. As shown in Figure 6, we build the axis with A as
the origin and x-axis along the direction from A to B. Assume
the mobile phone moves from X0 to X1 and the position of
X0 is known.

We show how to calculate the new position X1 by DW-
PC. First, we can calculate the distance a1 and a2 towards
signal source A and B by DW-PC. Therefore, we can calculate
the length X1A = X0A − a1 and X1B = X0B − a2.
Accordingly, we can calculate cosα =

d20+X1A
2−X1B

2d0X1A
. The

position (x1, y1) of X1 can be calculated as x1 = X1A ·cosα
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Fig. 6: 2D tracking based on DW-PC.

and y1 = X1A · sinα. Similarly, 3D tracking can be achieved
by 3 signal sources. Here we omit the details.

C. Initial Position of Signal Source

There are two types of information that should be
determined for most acoustic motion tracking approach-
es [24] [13] [21], i.e., the initial position of mobile phone
and the initial position of signal source. The first requirement
is to calculate the initial position of the signal source. Assume
there are two signal sources A and B, as shown in Figure 7,
calculating the initial position is equal to calculate the distance
between two signal sources. As DW-PC can directly measure
the distance a mobile phone has moved, we move the mobile
phone from signal source A to source B. The distance between
two signal sources A and B can then be calculated by DW-PC.

D. Initial Position of Mobile Phone

Another important step is to measure the initial position
of mobile phone. In [24] [13], particular filtering method is
used to derive the initial position. Intuitively, a large collection
of possible initial positions are generated, each of which is
tested according to the movement information. Finally, the
centroid of the remaining particulars is calculated as the initial
position. This introduces a high overhead and a relatively high
measurement error [24].

In our approach, we show how to derive the initial position
using DW-PC. We propose a method in which a user only
needs to move the mobile phone for a certain distance towards
a signal source or move the mobile phone from a signal source
to any position to calculate the initial position. We call this
method moving while initialization (MOWI).

As shown in Figure 7, assume the distance between A and B
is d0. Here we mainly show how to measure the initial position
by moving the mobile phone towards the signal source. The
method by moving the mobile phone from the signal source
to any initial position is similar. Suppose the initial position
of mobile phone is point X . A user moves the mobile phone
from X to Z, passing a point Y . During the moving process,
we can calculate the distance from X to Y and Y to Z using
DW-PC. Thus we can calculate the distance for a1, a2 for the
movement from X to Y , and b1 and b2 for the movement

A B x

y (x0,y0)

d0

a1

d2
b1

a2

b2

d1
d2

Fig. 7: Initial position of the mobile phone.

from Y to Z respectively. Denote the angle 6 XBA as α, the
distance ZB as d1 and the distance ZA as d2, we have

cosα =
d21+d20−d

2
2

2d0d1

cosα =
(d1+b1)2+d20−(d2+b2)2

2d0(d1+b1)

cosα =
(d1+b1+a1)2+d20−(d2+b2+a2)2

2d0(d1+b1+a1)

(15)

Solving this equation, we obtain

d2 =
a21b1 − a22b1 + a1b

2
1 − 2a2b1b2 + a1b

2
2

2(a2b1 − a1b2)
. (16)

Plugging d2 to the equation array, we can obtain the value of
d1. We omit the details for the lengthy formula of d1. Based
on d1 and d2, we can obtain the coordination (x, y) of X .

IV. IMPLEMENTATION

We implement Vernier on Android 6.0.1 as an App. The
signal sources of Vernier Tracker can be most COTS speakers
like the speakers on TV. In our implementation, we use the
speaker (SV S840B) as shown in Figure 8 (a). The speakers is
connected to a mobile phone which can play audio files con-
taining waves of different frequency. Instead of using a group
of sine and chirp signals on different frequency bands [13], our
approach uses sine waves (e.g., 20000 Hz and 17500 Hz for
2D tracking in our implementation). The sine wave files are
generated on a desktop computer. Vernier on Android receives
and analyzes the received signal, and displays the real-time
location on the screen. Meanwhile, Vernier Tracker can also
record all signal data for further analysis and comparison in
evaluation.

A. Moving Distance Measurement

We use the equipment in Figure 9 (a) to measure distance
accurately. The mobile phone is fixed on the platform of the
equipment. We can move the platform horizontally and verti-
cally by rolling the rocker. Figure 9 (b) shows the measured
distance on the mobile app. In the app, we draw a virtual rule
for 10 mm.

There are 25 scales on the rocker and the platform moves
1.25 mm when the rocker rolling one circle (0.05 mm for each
scale). We can move the platform horizontally and vertically so
we can obtain the ground truth for the mobile phone position.



Fig. 8: Experiment scenario.

B. Clock Inconsistency

In practice implementation, we find that there exists a clock
inconsistency for the generated signal and received signal,
which further leads to a distance measurement error. We
conduct an experiment to validate the impact of clock incon-
sistency. We noticed the received signal frequency, even when
the mobile phone is static, is different from the signal source.
This leads to a non-zero moving speed and a continuously
increasing distance. To address the frequency inconsistency,
we propose a linear frequency compensate (FC) to calibrate
the frequency for the signal source and mobile phone.

Assume the frequency shift between the mobile phone and
the signal source is α. A signal at frequency F0 is received
at frequency (1 + α)F0. By keeping the mobile phone static,
we calibrate the frequency as follows. If there is no frequency
drift, the calculated phase change by DW-PC for a time period
T should be TF02π. Assume the calculated the phase change
by DW-PC for a time period T is φ, we can calculate the
frequency drift α = φ

2πT . We use α to compensate the
frequency shift between the signal source and mobile phone.

V. EVALUATION

A. Evaluation Methodology

We mainly evaluate the performance of Vernier from the
following aspects.
• Tracking accuracy: we show the accuracy of Vernier in

motion tracking compared with other approaches.
• Delay: the time consumption of Vernier and other ap-

proaches.
• Robustness: performance in different application environ-

ments.
• Overall performance: we also evaluate the overall perfor-

mance for different tracking paths.

B. Tracking Accuracy

We first measure the 1D distance tracking error. In this
experiment, we vary the initial distance from the mobile
phone to the speaker and calculate the corresponding distance
measurement error. The results show that the error is under
2 mm even when the distance between the mobile phone
and speaker is 7 m. The result is shown in Figure 10 (a).
Figure 10 (b) shows the detailed measurement error of diff-
erent moving distance for our approach. We move the mobile
phone for different distance from 1 cm to 10 cm ( larger-scale

Mobile Phone

(a) (b)

Fig. 9: (a) Moving distance measurement; (b) mobile app.

measurement is hard to achieve because of the limitation of
our equipment as shown in Figure 9 (a)). For each distance, we
measure the moving distance for 30 times. The accumulated
error is small for different moving distance. This enables our
approach for many applications, such as video gaming, VR,
smart appliances control, etc.

We further measure the tracking accuracy in 2D case. In
this experiment, we move the mobile phone following the a
path of ”L” whose size is about 2 cm × 2 cm. Figure 11
(a) shows the tracking error of different distance from the
mobile phone to the speakers. Figure 11 (b) shows how the
tracking error influenced by the speakers separation when the
mobile phone is 3 m away from the speaker. We can see the
error for different distance is slightly larger than that in 1D.
Nevertheless, the error is still under 4 mm.

C. Delay Performance

In our evaluation, we implement most recent acoustic track-
ing approaches including Doppler Effect based approach [24]
(denoted by Doppler), phase based approach [21] (denoted by
LLAP) and FMCW based approach [13] (denoted by FMCW)
for comparison. For fair comparison, we use the same recorded
signal in performance comparison for different approaches.
The FMCW based approach [13] requires both sine wave and
chirp signal for tracking, so we generate chirp signals from
8500 Hz to 18500 Hz for this approach. The mobile phone
used in our evaluation is Samsung Galaxy S7 with Android
6.0.1.

We implement an active version of this approach by using
the phase calculation method proposed in [21]. We directly use
the received signal from the speaker instead of the reflected
signal. By using such a method, the tracking range becomes
much larger than before. We denote such a method Phase+.
Figure 12 (a) shows average time consumption for each sample
using different approaches on Android device.

D. Robustness

In this experiment, we mainly show how our approach can
work in different environments for practical scenarios. We
evaluate the performance from the following aspects:
• Different intensity of noise.
• Different devices.
• Different multipath scenarios.
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Fig. 10: 1-D accuracy: (a) Different initial distance; (b) Diff-
erent moving distance.
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Fig. 11: 2-D accuracy: (a) Different initial distance; (b) Diff-
erent speaker separation.

The impact of noise intensity. In this experiment, we vary
the noise volume to different levels, i.e., around 40 db (library
room), 50 db (air conditioner’s noise), 60 db (human talking)
and 70 db (noisy street). Then we evaluate the performance
of Vernier under different levels. The result is shown in
Figure 12 (b). We can see that the error increases as the noise
level increases. The overall error for all distances is still very
small.

The impact of device. We also tested other mobile phones
(e.g., Sony L50t) and other speakers and the results are similar.
Figure 13 (a) shows the results on different devices when the
mobile phone moves 1 cm.

The impact of multipath scenarios. Ultra-sound has a strong
directionality because of its short wavelength. As a result, the
influence of multipath effect in active tracking system is es-
pecially weak. Figure 13 (b) shows the distance measurement
error in scenario with/without the reflection path by the surface
of the desk when the mobile phone moves 1 cm at the distance
of 1 m. The result demonstrates that the influence of multipath
effect in our experiment is slight.

E. Overall Performance

We evaluate Vernier Tracker using the method as in [13]:
the similarity between the Vernier Tracker reported trace and
the standard drawing template. In this experiment, we examine
the performance of Vernier to draw different figures. we print
different templates (banana, snake, hat and rabbit) and move
the mobile phone following the curve of printed templates.

As shown in Figure 14, we plot the tracking results and
compare them with the original templates. As we can see,
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Fig. 12: (a) Time consumption of different approaches; (b)
Median error of different noise intensity.
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Fig. 13: (a) Median error on different devices; (b) Median
error in with/without reflection scenario.

Vernier can follow the curves. All the details in the original
templates can be plotted, indicating a high accuracy of our
approach. It should also be noted that somewhere in the
drawing may not be as smooth as the original template. We
check the data and found that this may due to unstable drawing
as it is very difficult to control the drawing exactly and
smoothly following the original curve. Nevertheless, the results
demonstrate that Vernier preserves the details of the original
templates and can be used in real applications.

VI. CONCLUSION

In this paper, we present Vernier, an efficient and accurate
acoustic motion tracking approach on commodity mobile
devices. We address the fundamental limitations of existing
approaches in terms tracking accuracy, overhead and delay.
In Vernier, we present a novel differentiated window based
sample counting for phase estimate and mobile motion track-
ing. We theoretically show that Vernier can achieve accurate
motion tracking with a window much smaller than existing
approaches while incurring a small computation overhead and
delay. We implement Vernier in Android and examine its
performance with Samsung Galaxy S7 and Sony L50t. We
conduct extensive experiments to evaluate the performance of
Vernier. The results show that Vernier can achieve accurate
motion tracking with error less than 4 mm in 7 m. We believe
the design of Vernier is general and can facilitate various
mobile applications such as video gaming, VR, AR, etc.
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Fig. 14: Using 2D tracking to draw different templates. (a) (c) (e) (g) are the original templates of banana, snake, hat and
rabbit. (b) (d) (e) (h) are drawing results.
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